3.2.56 \(\int \frac {x^5 (a+b \csc ^{-1}(c x))}{(d+e x^2)^{5/2}} \, dx\) [156]

3.2.56.1 Optimal result
3.2.56.2 Mathematica [C] (verified)
3.2.56.3 Rubi [A] (verified)
3.2.56.4 Maple [F]
3.2.56.5 Fricas [B] (verification not implemented)
3.2.56.6 Sympy [F]
3.2.56.7 Maxima [F(-2)]
3.2.56.8 Giac [F]
3.2.56.9 Mupad [F(-1)]

3.2.56.1 Optimal result

Integrand size = 23, antiderivative size = 243 \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\frac {b c d x \sqrt {-1+c^2 x^2}}{3 e^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {8 b c \sqrt {d} x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{3 e^3 \sqrt {c^2 x^2}}+\frac {b x \text {arctanh}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{e^{5/2} \sqrt {c^2 x^2}} \]

output
-1/3*d^2*(a+b*arccsc(c*x))/e^3/(e*x^2+d)^(3/2)+b*x*arctanh(e^(1/2)*(c^2*x^ 
2-1)^(1/2)/c/(e*x^2+d)^(1/2))/e^(5/2)/(c^2*x^2)^(1/2)-8/3*b*c*x*arctan((e* 
x^2+d)^(1/2)/d^(1/2)/(c^2*x^2-1)^(1/2))*d^(1/2)/e^3/(c^2*x^2)^(1/2)+2*d*(a 
+b*arccsc(c*x))/e^3/(e*x^2+d)^(1/2)+1/3*b*c*d*x*(c^2*x^2-1)^(1/2)/e^2/(c^2 
*d+e)/(c^2*x^2)^(1/2)/(e*x^2+d)^(1/2)+(a+b*arccsc(c*x))*(e*x^2+d)^(1/2)/e^ 
3
 
3.2.56.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 1.47 (sec) , antiderivative size = 240, normalized size of antiderivative = 0.99 \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\frac {\frac {2 b c d e \sqrt {1-\frac {1}{c^2 x^2}} x \left (d+e x^2\right )}{c^2 d+e}+2 a \left (8 d^2+12 d e x^2+3 e^2 x^4\right )+\frac {b c \left (d+e x^2\right ) \left (-\frac {8 d \sqrt {1+\frac {d}{e x^2}} \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,\frac {1}{c^2 x^2},-\frac {d}{e x^2}\right )}{c^2}-\frac {3 e \sqrt {1-\frac {1}{c^2 x^2}} x^4 \sqrt {1+\frac {e x^2}{d}} \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,c^2 x^2,-\frac {e x^2}{d}\right )}{\sqrt {1-c^2 x^2}}\right )}{x}+2 b \left (8 d^2+12 d e x^2+3 e^2 x^4\right ) \csc ^{-1}(c x)}{6 e^3 \left (d+e x^2\right )^{3/2}} \]

input
Integrate[(x^5*(a + b*ArcCsc[c*x]))/(d + e*x^2)^(5/2),x]
 
output
((2*b*c*d*e*Sqrt[1 - 1/(c^2*x^2)]*x*(d + e*x^2))/(c^2*d + e) + 2*a*(8*d^2 
+ 12*d*e*x^2 + 3*e^2*x^4) + (b*c*(d + e*x^2)*((-8*d*Sqrt[1 + d/(e*x^2)]*Ap 
pellF1[1, 1/2, 1/2, 2, 1/(c^2*x^2), -(d/(e*x^2))])/c^2 - (3*e*Sqrt[1 - 1/( 
c^2*x^2)]*x^4*Sqrt[1 + (e*x^2)/d]*AppellF1[1, 1/2, 1/2, 2, c^2*x^2, -((e*x 
^2)/d)])/Sqrt[1 - c^2*x^2]))/x + 2*b*(8*d^2 + 12*d*e*x^2 + 3*e^2*x^4)*ArcC 
sc[c*x])/(6*e^3*(d + e*x^2)^(3/2))
 
3.2.56.3 Rubi [A] (verified)

Time = 1.34 (sec) , antiderivative size = 219, normalized size of antiderivative = 0.90, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {5762, 27, 7282, 2117, 27, 175, 66, 104, 217, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 5762

\(\displaystyle \frac {b c x \int \frac {3 e^2 x^4+12 d e x^2+8 d^2}{3 e^3 x \sqrt {c^2 x^2-1} \left (e x^2+d\right )^{3/2}}dx}{\sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b c x \int \frac {3 e^2 x^4+12 d e x^2+8 d^2}{x \sqrt {c^2 x^2-1} \left (e x^2+d\right )^{3/2}}dx}{3 e^3 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 7282

\(\displaystyle \frac {b c x \int \frac {3 e^2 x^4+12 d e x^2+8 d^2}{x^2 \sqrt {c^2 x^2-1} \left (e x^2+d\right )^{3/2}}dx^2}{6 e^3 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 2117

\(\displaystyle \frac {b c x \left (\frac {2 d e \sqrt {c^2 x^2-1}}{\left (c^2 d+e\right ) \sqrt {d+e x^2}}-\frac {2 \int -\frac {d \left (d c^2+e\right ) \left (3 e x^2+8 d\right )}{2 x^2 \sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2}{d \left (c^2 d+e\right )}\right )}{6 e^3 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b c x \left (\int \frac {3 e x^2+8 d}{x^2 \sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2+\frac {2 d e \sqrt {c^2 x^2-1}}{\left (c^2 d+e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 175

\(\displaystyle \frac {b c x \left (3 e \int \frac {1}{\sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2+8 d \int \frac {1}{x^2 \sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2+\frac {2 d e \sqrt {c^2 x^2-1}}{\left (c^2 d+e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 66

\(\displaystyle \frac {b c x \left (8 d \int \frac {1}{x^2 \sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2+6 e \int \frac {1}{c^2-e x^4}d\frac {\sqrt {c^2 x^2-1}}{\sqrt {e x^2+d}}+\frac {2 d e \sqrt {c^2 x^2-1}}{\left (c^2 d+e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {b c x \left (6 e \int \frac {1}{c^2-e x^4}d\frac {\sqrt {c^2 x^2-1}}{\sqrt {e x^2+d}}+16 d \int \frac {1}{-x^4-d}d\frac {\sqrt {e x^2+d}}{\sqrt {c^2 x^2-1}}+\frac {2 d e \sqrt {c^2 x^2-1}}{\left (c^2 d+e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {b c x \left (6 e \int \frac {1}{c^2-e x^4}d\frac {\sqrt {c^2 x^2-1}}{\sqrt {e x^2+d}}-16 \sqrt {d} \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )+\frac {2 d e \sqrt {c^2 x^2-1}}{\left (c^2 d+e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {c^2 x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}+\frac {b c x \left (-16 \sqrt {d} \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )+\frac {6 \sqrt {e} \text {arctanh}\left (\frac {\sqrt {e} \sqrt {c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{c}+\frac {2 d e \sqrt {c^2 x^2-1}}{\left (c^2 d+e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {c^2 x^2}}\)

input
Int[(x^5*(a + b*ArcCsc[c*x]))/(d + e*x^2)^(5/2),x]
 
output
-1/3*(d^2*(a + b*ArcCsc[c*x]))/(e^3*(d + e*x^2)^(3/2)) + (2*d*(a + b*ArcCs 
c[c*x]))/(e^3*Sqrt[d + e*x^2]) + (Sqrt[d + e*x^2]*(a + b*ArcCsc[c*x]))/e^3 
 + (b*c*x*((2*d*e*Sqrt[-1 + c^2*x^2])/((c^2*d + e)*Sqrt[d + e*x^2]) - 16*S 
qrt[d]*ArcTan[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[-1 + c^2*x^2])] + (6*Sqrt[e]*A 
rcTanh[(Sqrt[e]*Sqrt[-1 + c^2*x^2])/(c*Sqrt[d + e*x^2])])/c))/(6*e^3*Sqrt[ 
c^2*x^2])
 

3.2.56.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 175
Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_ 
)))/((a_.) + (b_.)*(x_)), x_] :> Simp[h/b   Int[(c + d*x)^n*(e + f*x)^p, x] 
, x] + Simp[(b*g - a*h)/b   Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)), x], x] 
 /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 2117
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_ 
.)*(x_))^(p_.), x_Symbol] :> With[{Qx = PolynomialQuotient[Px, a + b*x, x], 
 R = PolynomialRemainder[Px, a + b*x, x]}, Simp[b*R*(a + b*x)^(m + 1)*(c + 
d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Si 
mp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n* 
(e + f*x)^p*ExpandToSum[(m + 1)*(b*c - a*d)*(b*e - a*f)*Qx + a*d*f*R*(m + 1 
) - b*R*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*R*(m + n + p + 3)*x, x] 
, x], x]] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && PolyQ[Px, x] && LtQ[m, - 
1] && IntegersQ[2*m, 2*n, 2*p]
 

rule 5762
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x 
_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Sim 
p[(a + b*ArcCsc[c*x])   u, x] + Simp[b*c*(x/Sqrt[c^2*x^2])   Int[SimplifyIn 
tegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, 
 p}, x] && ((IGtQ[p, 0] &&  !(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) | 
| (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0])) || (ILtQ[(m 
 + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))
 

rule 7282
Int[(u_)/(x_), x_Symbol] :> With[{lst = PowerVariableExpn[u, 0, x]}, Simp[1 
/lst[[2]]   Subst[Int[NormalizeIntegrand[Simplify[lst[[1]]/x], x], x], x, ( 
lst[[3]]*x)^lst[[2]]], x] /;  !FalseQ[lst] && NeQ[lst[[2]], 0]] /; NonsumQ[ 
u] &&  !RationalFunctionQ[u, x]
 
3.2.56.4 Maple [F]

\[\int \frac {x^{5} \left (a +b \,\operatorname {arccsc}\left (c x \right )\right )}{\left (e \,x^{2}+d \right )^{\frac {5}{2}}}d x\]

input
int(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x)
 
output
int(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x)
 
3.2.56.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 514 vs. \(2 (205) = 410\).

Time = 0.50 (sec) , antiderivative size = 2119, normalized size of antiderivative = 8.72 \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x, algorithm="fricas")
 
output
[1/12*(3*(b*c^2*d^3 + (b*c^2*d*e^2 + b*e^3)*x^4 + b*d^2*e + 2*(b*c^2*d^2*e 
 + b*d*e^2)*x^2)*sqrt(e)*log(8*c^4*e^2*x^4 + c^4*d^2 - 6*c^2*d*e + 8*(c^4* 
d*e - c^2*e^2)*x^2 + 4*(2*c^3*e*x^2 + c^3*d - c*e)*sqrt(c^2*x^2 - 1)*sqrt( 
e*x^2 + d)*sqrt(e) + e^2) + 8*(b*c^3*d^3 + b*c*d^2*e + (b*c^3*d*e^2 + b*c* 
e^3)*x^4 + 2*(b*c^3*d^2*e + b*c*d*e^2)*x^2)*sqrt(-d)*log(((c^4*d^2 - 6*c^2 
*d*e + e^2)*x^4 - 8*(c^2*d^2 - d*e)*x^2 + 4*sqrt(c^2*x^2 - 1)*((c^2*d - e) 
*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(-d) + 8*d^2)/x^4) + 4*(8*a*c^3*d^3 + 8*a* 
c*d^2*e + 3*(a*c^3*d*e^2 + a*c*e^3)*x^4 + 12*(a*c^3*d^2*e + a*c*d*e^2)*x^2 
 + (8*b*c^3*d^3 + 8*b*c*d^2*e + 3*(b*c^3*d*e^2 + b*c*e^3)*x^4 + 12*(b*c^3* 
d^2*e + b*c*d*e^2)*x^2)*arccsc(c*x) + (b*c*d*e^2*x^2 + b*c*d^2*e)*sqrt(c^2 
*x^2 - 1))*sqrt(e*x^2 + d))/(c^3*d^3*e^3 + c*d^2*e^4 + (c^3*d*e^5 + c*e^6) 
*x^4 + 2*(c^3*d^2*e^4 + c*d*e^5)*x^2), -1/12*(16*(b*c^3*d^3 + b*c*d^2*e + 
(b*c^3*d*e^2 + b*c*e^3)*x^4 + 2*(b*c^3*d^2*e + b*c*d*e^2)*x^2)*sqrt(d)*arc 
tan(-1/2*sqrt(c^2*x^2 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(d) 
/(c^2*d*e*x^4 + (c^2*d^2 - d*e)*x^2 - d^2)) - 3*(b*c^2*d^3 + (b*c^2*d*e^2 
+ b*e^3)*x^4 + b*d^2*e + 2*(b*c^2*d^2*e + b*d*e^2)*x^2)*sqrt(e)*log(8*c^4* 
e^2*x^4 + c^4*d^2 - 6*c^2*d*e + 8*(c^4*d*e - c^2*e^2)*x^2 + 4*(2*c^3*e*x^2 
 + c^3*d - c*e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(e) + e^2) - 4*(8*a* 
c^3*d^3 + 8*a*c*d^2*e + 3*(a*c^3*d*e^2 + a*c*e^3)*x^4 + 12*(a*c^3*d^2*e + 
a*c*d*e^2)*x^2 + (8*b*c^3*d^3 + 8*b*c*d^2*e + 3*(b*c^3*d*e^2 + b*c*e^3)...
 
3.2.56.6 Sympy [F]

\[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\int \frac {x^{5} \left (a + b \operatorname {acsc}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(x**5*(a+b*acsc(c*x))/(e*x**2+d)**(5/2),x)
 
output
Integral(x**5*(a + b*acsc(c*x))/(d + e*x**2)**(5/2), x)
 
3.2.56.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.56.8 Giac [F]

\[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \operatorname {arccsc}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x, algorithm="giac")
 
output
integrate((b*arccsc(c*x) + a)*x^5/(e*x^2 + d)^(5/2), x)
 
3.2.56.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\int \frac {x^5\,\left (a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^{5/2}} \,d x \]

input
int((x^5*(a + b*asin(1/(c*x))))/(d + e*x^2)^(5/2),x)
 
output
int((x^5*(a + b*asin(1/(c*x))))/(d + e*x^2)^(5/2), x)